Abstract

Membrane distillation (MD) has the high potential to circumvent conventional desalination limitations in treating highly saline brines. However, the performance of MD is limited by its low thermal efficiencyand temperature polarization (TP) effect. Consequently, the driving force decreases when heat loss increases.In this study, we propose to minimize TP through localized heating where the thin feed channel was heated uniformly at the membrane-liquid interface without changing the properties of the membrane.This concept was further improved by implementing a new dead-end MD configuration. Investigated for the first time,this configuration eliminated circulation heat losses, which cannot be realized in conventional MD due to a rapid temperature stratification. In addition, the accumulation of foulants on the membrane surface was successfully controlled by intermittent flushing. 3-Dimensional conjugate heat transfer modeling revealedmore uniform heat transfer and temperature gradient across the membrane due to the increased feed water temperature over a larger membrane area. The increase of water vapor flux (45%) and the reduction of heat lossobserved in the new dead-end concept led to a decrease of the specific energy consumption by 57%, corresponding to a gain output ratio increase of about 132 %, compared to a conventional bulk heating, while preserving membrane integrity. A conjugate heat transfer model was deployed in ANSYS-Fluent framework to elucidate on the mechanism of flux enhancement associated with the proposed technique. This study provides a framework for future sustainable MD developmentby maintaining a stable vapor flux while minimizing energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.