Abstract

The dead-end elimination algorithm has proven to be a powerful tool in protein homology modeling since it allows one to determine rapidly the global minimum-energy conformation (GMEC) of an arbitrarily large collection of side chains, given fixed backbone coordinates. After introducing briefly the necessary background, we focus on logic arguments that increase the efficacy of the dead-end elimination process. Second, we present new theoretical considerations on the use of the dead-end elimination method as a tool to identify sequences that are compatible with a given scaffold structure. Third, we initiate a search for properties derived from the computed GMEC structure to predict whether a given sequence can be well packed in the core of a protein. Three properties will be considered: the nonbonded energy, the accessible surface area, and the extent by which the GMEC side-chain conformations deviate from a locally optimal conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call