Abstract

Dead-End Elimination (DEE) is a powerful algorithm capable of reducing the search space for structure-based protein design by a combinatorial factor. By using a fixed backbone template, a rotamer library, and a potential energy function, DEE identifies and prunes rotamer choices that are provably not part of the Global Minimum Energy Conformation (GMEC), effectively eliminating the majority of the conformations that must be subsequently enumerated to obtain the GMEC. Since a fixed-backbone model biases the algorithm predictions against protein sequences for which even small backbone movements may result in a significantly enhanced stability, the incorporation of backbone flexibility can improve the accuracy of the design predictions. If explicit backbone flexibility is incorporated into the model, however, the traditional DEE criteria can no longer guarantee that the flexible-backbone GMEC, the lowest-energy conformation when the backbone is allowed to flex, will not be pruned. We derive a novel DEE pruning criterion, flexible-backbone DEE (BD), that is provably accurate with backbone flexibility, guaranteeing that no rotamers belonging to the flexible-backbone GMEC are pruned; we also present further enhancements to BD for improved pruning efficiency. The results from applying our novel algorithms to redesign the beta1 domain of protein G and to switch the substrate specificity of the NRPS enzyme GrsA-PheA are then compared against the results from previous fixed-backbone DEE algorithms. We confirm experimentally that traditional-DEE is indeed not provably-accurate with backbone flexibility and that BD is capable of generating conformations with significantly lower energies, thus confirming the feasibility of our novel algorithms. Contact authors for source code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.