Abstract
Thyrotropin [thyroid-stimulating hormone (TSH)] receptor on-off signaling was studied in polarized monolayers of pig thyrocytes cultured on permeable support. Transepithelial resistance (R) and potential difference (PD) were used as parameters to monitor the effect of altered TSH concentrations on vectorial electrolyte transport. TSH induced rapid but long-lasting changes in R (decrease) and PD (increase) that were cAMP-dependent and related to enhanced transcellular conductance of sodium and chloride. Withdrawal of TSH from cultures prestimulated with TSH (0.1 mU/ml) for 48 h resulted in restitution of R to control level within 30 min. Such deactivation was markedly accelerated by mild trypsinization, which degraded receptor-bound ligand without affecting TSH receptor responsiveness or ion transporting capacity. Small alterations in the TSH concentration (0.01-0.1 mU/ml) were followed almost instantaneously by adjustments of R. In contrast, the reversal of R after acute TSH stimulation (30 min) and subsequent TSH washout was delayed for several hours independently of cell surface trypsinization. The observations indicate that, during continuous exposure to physiological concentrations, TSH exerts a close minute-to-minute surveillance of thyroid function and the rate-limiting step of deactivation is the dissociation of ligand from the TSH receptor at the cell surface. TSH-deprived cells briefly exposed to TSH are refractory to rapid deactivation, probably because of altered metabolism downstream of TSH receptor signal transduction.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have