Abstract

BackgroundTaxodium is renowned for its strong tolerance to waterlogging stress, thus it has great ecological and economic potential. However, the scant genomic resources in genus Taxodium have greatly hindered further exploration of its underlying flood-tolerance mechanism. Taxodium ‘Zhongshansa’ is an interspecies hybrid of T. distichum and T. mucronatum, and has been widely planted in southeastern China. To understand the genetic basis of its flood tolerance, we analyzed the transcriptomes of Taxodium ‘Zhongshansa’ roots and shoots in response to short-term waterlogging.ResultsRNA-seq was used to analyze genome-wide transcriptome changes of Taxodium ‘Zhongshansa 406’ clone root and shoot treated with 1 h of soil-waterlogging stress. After de novo assembly, 108,692 unigenes were achieved, and 70,260 (64.64%) of them were annotated. There were 2090 differentially expressed genes (DEGs) found in roots and 394 in shoots, with 174 shared by both of them, indicating that the aerial parts were also affected. Under waterlogging stress, the primary reaction of hypoxic-treated root was to activate the antioxidative defense system to prevent cells experiencing reactive oxygen species (ROS) poisoning. As respiration was inhibited and ATP decreased, another quick coping mechanism was repressing the energy-consuming biosynthetic processes through the whole plant. The glycolysis and fermentation pathway was activated to maintain ATP production in the hypoxic root. Constantly, the demand for carbohydrates increased, and carbohydrate metabolism were accumulated in the root as well as the shoot, possibly indicating that systemic communications between waterlogged and non-waterlogged tissues facilated survival. Amino acid metabolism was also greatly influenced, with down-regulation of genes involvedin serine degradation and up-regulation of aspartic acid degradation. Additionally, a non-symbiotic hemoglobin class 1 gene was up-regulated, which may also help the ATP production. Moreover, the gene expression pattern of 5 unigenes involving in the glycolysis pathway revealed by qRT-PCR confirmed the RNA-Seq data.ConclusionsWe conclude that ROS detoxification and energy maintenance were the primary coping mechanisms of ‘Zhongshansa’ in surviving oxygen deficiency, which may be responsible for its remarkable waterlogging tolerance. Our study not only provided the first large-scale assessment of genomic resources of Taxodium but also guidelines for probing the molecular mechanism underlying ‘Zhongshansa’ waterlogging tolerance.

Highlights

  • Taxodium is renowned for its strong tolerance to waterlogging stress, it has great ecological and economic potential

  • To develop optimal woody plants for afforestation in the coastal and wetland areas of southeastern China, a number of interspecies crosses among the three Taxodium species have been conducted since the 1970s, from which a batch of superior hybrid clones have been selected, such as ‘Zhongshansa 302’ (T. distichum × T. mucronatum), ‘Zhongshansa 118’ [(T. distichum × T. mucronatum) × T. mucronatum] and ‘Zhongshansa 406’ (T. mucronatum × T. distichum) [4]

  • We focused on the early stage of ‘Zhongshansa’ response to waterlogging stress because it determines the switch from normal to low-oxygen metabolism and plays an essential role in plant survival [8]

Read more

Summary

Introduction

Taxodium is renowned for its strong tolerance to waterlogging stress, it has great ecological and economic potential. Taxodium ‘Zhongshansa’ is an interspecies hybrid of T. distichum and T. mucronatum, and has been widely planted in southeastern China. To develop optimal woody plants for afforestation in the coastal and wetland areas of southeastern China, a number of interspecies crosses among the three Taxodium species have been conducted since the 1970s, from which a batch of superior hybrid clones have been selected, such as ‘Zhongshansa 302’ (T. distichum × T. mucronatum), ‘Zhongshansa 118’ [(T. distichum × T. mucronatum) × T. mucronatum] and ‘Zhongshansa 406’ (T. mucronatum × T. distichum) [4]. Despite its great ecological and economic potential, genomic information on genus Taxodium is scarce, which greatly hinders the development of molecular markers, further exploration of its underlying flood-tolerance mechanism and other genetic research

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.