Abstract

Betulinic acid (BA) is a lupinane-type pentacyclic triterpenoid natural product derived from lupeol that has favorable anti-inflammatory and anti-tumor activities. Currently, BA is mainly produced via botanical extraction, which significantly limits its widespread use. In this study, we investigated the de novo synthesis of BA in Saccharomyces cerevisiae, and to facilitate the synthesis and storage of hydrophobic BA, we adopted a dual-engineering strategy involving peroxisomes and lipid droplets to construct the BA biosynthetic pathway. By expressing Betula platyphylla-derived lupeol C-28 oxidase (BPLO) and Arabidopsis-derived ATR1, we succeeded in developing a BA-producing strain and following multiple expression optimizations of the linker between BPLO and ATR1, the BA titer reached 77.53mg/L in shake flasks and subsequently reached 205.74mg/L via fed-batch fermentation in a 5-L bioreactor. In this study, we developed a feasible approach for the de novo synthesis of BA and its direct precursor lupeol in engineered S. cerevisiae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.