Abstract

We studied the de novo and salvage pathways of DNA synthesis in sphere-forming neural stem cells obtained from mouse embryos by a neurosphere method. The former pathway needs folic acid (FA) for nucleotide biosynthesis, while the latter requires deoxyribonucleosides (dNS). We examined the proliferative activity of sphere-forming cells in E14.5 embryos by counting the number of spheres formed in media that lacked FA and/or dNS. Proliferation failure and apoptosis occurred in a deficient medium lacking of both FA and dNS. Spheres formed in the deficient medium supplemented with dNS, without FA, did not produce neuron, but rather only seem to generate astrocytes and oligodendrocytes when plated under differentiation condition in culture. On the other hand, a subpopulation of cultured cells formed spheres in the deficient medium supplemented with FA alone in an appropriate concentration, and did possess the self-renewing and multipotential characteristics of neural stem cells. Spheres formed in the media containing low dose Azathioprine and methotrexate, inhibitors of de novo DNA synthesis, were selectively prevented from producing neurons even in the presence of FA. These results suggested that activating de novo DNA synthesis was needed for neural stem cells to proliferate with multipotentiality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.