Abstract
The fate and behavior of estrone-3-sulfate (E1-3S), estradiol-3-sulfate (E2-3S), estrone-3-glucuronide (E1-3G) and estradiol-3-glucuronide (E2-3G) were studied in raw sewage, activated sludge and river water using microcosms. The glucuronide conjugates had a half-life of 0.4h in raw sewage, yielding 40–60% of their free estrogens. Field observations at three activated sludge processes suggested complete transformation of the glucuronide conjugates in the sewer. In river water glucuronide conjugates half-lives extended to over 2d yielding 60–100% of their free parent estrogens. Transformation of the sulfate conjugates in raw sewage and river water was slow with little formation of the parent estrogens. Sulfate conjugates could readily be detected in sewage influent in the field studies. In activated sludge the sulfate conjugates had half-lives of 0.2h with the transient formation of 10–55% of the free parent estrogens. Field studies indicated transformation of sulfate conjugates across the sewage treatment, although a proportion escaped into the effluent. These results broadly support the view that glucuronide conjugates will be entirely transformed within the sewer largely to their parent estrogens. The sulfate conjugates may persist in raw sewage and river water but are transformable in activated sludge and, in the case of E2-3S, reform a high proportion of the parent estrogen.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have