Abstract

Cell shape morphogenesis, from spherical to polygonal, occurs in epithelial cell formation in metazoan embryogenesis. In syncytial Drosophila embryos, the plasma membrane incompletely surrounds each nucleus and is organized as a polygonal epithelial-like array. Each cortical syncytial division cycle shows a circular to polygonal plasma membrane transition along with furrow extension between adjacent nuclei from interphase to metaphase. In this study, we assess the relative contribution of DE-cadherin (also known as Shotgun) and Myosin II (comprising Zipper and Spaghetti squash in flies) at the furrow to polygonal shape transition. We show that polygonality initiates during each cortical syncytial division cycle when the furrow extends from 4.75 to 5.75 μm. Polygon plasma membrane organization correlates with increased junctional tension, increased DE-cadherin and decreased Myosin II mobility. DE-cadherin regulates furrow length and polygonality. Decreased Myosin II activity allows for polygonality to occur at a lower length than controls. Increased Myosin II activity leads to loss of lateral furrow formation and complete disruption of the polygonal shape transition. Our studies show that DE-cadherin-Myosin II balance regulates an optimal lateral membrane length during each syncytial cycle for polygonal shape transition.This article has an associated First Person interview with the first author of the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.