Abstract

The purpose of this study was to investigate the ability of cattle manure compost (CMC) to degrade 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT). DDT was degraded during composting and 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD) was detected as a metabolic product. Degradation of DDT at 60 °C was the most effective of all the stages of composting. Fourteen strains of fungi were isolated and identified from CMC, and most of them were closely related to Mucor circinelloides and Galactomyces geotrichum. These fungi demonstrated a high ability to degrade DDT both at 30 and 60 °C in potato dextrose broth (PDB) medium. DDD and 4,4-dichlorobenzophenone (DBP) were detected as metabolic products. Degradation of DDT-contaminated soil was also investigated. Composting materials in the mesophilic stage exhibited the highest ability to degrade DDT in un-sterilized (USL) contaminated soil during a 28 d incubation period. The isolated fungi possessed the ability to degrade DDT in sterilized (SL) and un-sterilized (USL) soils. These results indicated that CMC contains fungi that can be potentially used for bioremediation in DDT-contaminated environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.