Abstract

Semantic segmentation of large unstructured 3D point clouds is important problem for 3D object recognition which in turn is essential to solving more complex tasks such as scene understanding. The problem is highly challenging owing to large scale of data, varying point density and localization errors of 3D points. Nevertheless, with recent successes of deep neural network architectures to solve complex 2D perceptual problems, several researchers have shown interest to translate the developed 2D networks to 3D point cloud segmentation by a prior voxelization step for an explicit neighborhood representation. However, such a 3D grid representation loses the fine details and inherent structure due to quantization artifacts. For this purpose, this paper proposes an approach to performing semantic segmentation of 3D point clouds by exploiting the idea of super-point based graph construction. The proposed architecture is composed of two cascaded modules including a light-weight representation learning module which uses unsupervised geometric grouping to partition the large-scale unstructured 3D point cloud and a deep context aware sequential network based on long short memory units and graph convolutions with embedding residual learning for semantic segmentation. The proposed model is evaluated on two standard benchmark datasets and achieves competitive performance with the existing state-of-the-art datasets. The code and the obtained results have been made public at https://github.com/saba155/DCARN .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call