Abstract

SUMMARYReplication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.