Abstract
Hydrogenated amorphous carbon (a-C:H) films have been grown from argon/methane gas mixtures by electron cyclotron resonance chemical vapour deposition (ECR-CVD) on silicon substrates. The effects of the application of a DC substrate bias on the structural, morphological and mechanical properties of the films have been explored by multiple analysis techniques such as infrared and micro-Raman spectroscopy, atomic force microscopy, nanoindentation and pin-on-disk wear testing. In general, within the range of applied substrate bias (i.e. from −300 up to +100 V) we have observed a strong correlation between all measured properties of the a-C:H films and the ion energy. This work shows that the properties can differ greatly and indicates a threshold energy in the order of 90 eV. For the production of hard, low-friction coatings energies above this value are required.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have