Abstract

In this work, we examine the photoelectrochemical response of TiO2 layers prepared by reactive DC sputter deposition on conductive glass (FTO). We show that adequate conditioning of the FTO by a very thin (few nm thick) Ti interlayer and optimizing the sputter parameters, compact TiO2 anatase layers can be produced that reach incident photocurrent conversion efficiencies (IPCE) maxima peaking at 75%. This is outperforming many of the best titania photoanode structures (including high surface area 1D and 3D titania structures). The key role of the interlayer is to promote the crystallization of titania in the anatase form during the annealing process (as opposed to rutile in the interlayer-free case). Without this interlayer, an IPCE maxima of ≈43% is obtained for otherwise identically processed electrodes. The present work thus describes a most simple straightforward approach for fabricating compact, high-efficiency TiO2 (anatase) photoanodes.Graphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.