Abstract

The paper investigates DC programming and DCA for both modeling discrete portfolio optimization under concave transaction costs as DC programs, and their solution. DC reformulations are established by using penalty techniques in DC programming. A suitable global optimization branch and bound technique is also developed where a DC relaxation technique is used for lower bounding. Numerical simulations are reported that show the efficiency of DCA and the globality of its computed solutions, compared to standard algorithms for nonconvex nonlinear integer programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.