Abstract
In this paper, the discrete mean-variance model is considered for portfolio selection under concave transaction costs. By using the Cholesky decomposition technique, the convariance matrix to obtain a separable mixed integer nonlinear optimization problem is decomposed. A brand-and-bound algorithm based on Lagrangian relaxation is then proposed. Computational results are reported for test problems with the data randomly generated and those from the US stock market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.