Abstract

To use the acquisition of the k-space center signal (DC signal) implemented into a Cartesian three-dimensional (3D) FLASH sequence for retrospective respiratory self-gating and, thus, for the examination of the whole human lung in high spatial resolution during free breathing. Volunteer as well as patient measurements were performed under free breathing conditions. The DC signal is acquired after the actual image data acquisition within each excitation of a 3D FLASH sequence. The DC signal is then used to track respiratory motion for retrospective respiratory gating. It is shown that the acquisition of the DC signal after the imaging module can be used in a 3D FLASH sequence to extract respiratory motion information for retrospective respiratory self-gating and allows for shorter echo times (TE) and therefore increased lung parenchyma SNR. The acquisition of the DC signal after image signal acquisition allows successful retrospective gating, enabling the reconstruction of high resolution images of the whole human lung under free breathing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.