Abstract
The three-dimension Fast Low Angle SHot Magnetic Resonance Imaging (3D FLASH) sequence has been widely adopted in medical diagnostic imaging because of its availability, simplicity, and high spatial resolution. To improve the quality of structural brain images acquired with the 3D FLASH sequence, we developed a parameter optimization scheme and image inhomogeneity correction methods. The optimal imaging parameters were determined by maximizing gray-matter and white-matter CNR efficiency. Compared to protocols based on published parameters, applying the proposed optimal imaging parameters increased CNR efficiency by >10%. Image inhomogeneity, including signal and CNR inhomogeneity, was corrected by the choice of an optimal flip angle, estimated transmit function, and estimated receive sensitivity. As a result, our optimization and image inhomogeneity correction greatly improved the quality of images acquired with the 3D FLASH sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.