Abstract
In applications that transfer energy from the electric vehicle (EV) to the grid, the direct current (dc)/dc boost converter circuits on the vehicle must be light, low volume, and high efficiency. To achieve this advantage, the inductor sizes used in non-isolated dc/dc converter circuits must be reduced. Synchronous and interleaved synchronous topology structures are used in dc/dc boost converter circuits. This study conducted experimental performance analyses of these two dc/dc boost circuits in a system with a battery group and a wireless EV charging structure. The study presents that in the interleaved synchronous dc/dc boost topology at the same power values, inductor currents and output voltage/current ripple decrease, and efficiency increases. The performance characteristics of the two circuit topologies under different operating conditions have been experimentally proven. It has been shown that using interleaved synchronous dc/dc boost converter topology is advantageous in EVs' high charge/discharge applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.