Abstract

The full potential of second-order nonlinear polymers can be utilized in electro-optic polymer modulators with a DC biased operation scheme to greatly reduce the half-wave voltage. This technique makes use of the total achievable electro-optic coefficient, which can be more than three times the value that is used by the conventional devices of poled electro-optic polymer. As the result of the DC bias and with high-μβ chromophores, a low half-wave voltage of 1.5 V was achieved with 2-cm-long birefringent waveguide modulators at the wavelength of 1.3 μm. Results of a 200°C stability experiment indicate that this scheme also enables electro-optic polymer devices to meet the short-term high-temperature stability requirement because the polymer does not need to be poled prior to high-temperature steps. © 1999 Society of Photo-Optical Instrumentation Engineers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.