Abstract

We report the first RF characterization of short-channel replacement metal gate (RMG) InGaAs-OI nFETs built in a 3D monolithic (3DM) CMOS process. This process features RMG InGaAs-OI nFET top layer and SiGe-OI fin pFET bottom layer. We demonstrate state-of-the-art device integration on both levels. The bottom layer SiGe-OI pFETs are fabricated with a Gate-First (GF) process with fins and featuring epitaxial raised source drain (RSD) as well as silicide contact layer. The top layer InGaAs nFETs are fabricated with a RMG process featuring a self-aligned epitaxial raised source drain (RSD). We show that the 3D monolithic integration scheme does not degrade the performance of the bottom SiGe-OI pFETs owing to an optimized thermal budget for the top InGaAs nFETs. From the RF characterizations performed (post-3D monolithic process) on multifinger-gate InGaAs-OI nFETs, we extract a cut-off frequency (Ft) of 16.4GHz at a gate-length (Lg) of 120nm. Measurements on various gate lengths shows increasing cut-off frequency with decreasing gate-length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.