Abstract

The DC and RF-characteristics of novel AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) were studied at elevated temperatures up to 300 °C, after a 36 h continuous operation at 200 °C and after a 1 min thermal stress at temperatures up to 850 °C. At 300 °C, the gate-leakage current remains about four orders of magnitude lower than that for regular HFETs. At zero gate-bias, the saturation current decreased by only about 20% after 36 h of continuous operation at 200 °C. After a 700 °C, 1 min thermal stress, the gate leakage remained as low as 5 nA/mm, whereas the peak current and DC transconductance showed a 20% reduction. In spite of the decrease in the peak-current, the RF saturation power remained nearly constant for operation at temperatures up to 200 °C. We attribute this to a reduction in the current collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.