Abstract

The neocortex (NCx) generates at the dorsal region of the pallium in the forebrain. Several adjacent structures also contribute with neurons to NCx. Ventral pallium (VP) is considered to generate several populations of neurons that arrive through tangential migration to the NCx. Amongst them are the Cajal-Retzius cells and some transient pyramidal neurons. However, the specific site and timing of generation, trajectory of migration and actual contribution to the pyramidal population remains elusive. Here, we investigate the spatio-temporal origin of neuronal populations from VP in an in vivo model, using a transposase mediated in utero electroporation method in embryonic mouse. From E11 to E14 cells born at the lateral corner of the neocortical neuroepithelium including the VP migrated ventro-laterally to settle all areas of the ventral telencephalon. Specifically, neurons migrated into amygdala (Ag), olfactory cortices, and claustrum (Cl). However, we found no evidence for any neurons migrating tangentially toward the NCx, regardless the antero-posterior level and developmental time of the electroporation. Our results challenge the described ventral-pallial origin of the transient pyramidal neuron population. In order to find the exact origin of cortical neurons that were previously Dbx1-fate mapped we used the promoter region of the murine Dbx1 locus to selectively target Dbx1-expressing progenitors and label their lineage. We found these progenitors in low numbers in all pallial areas, and not only in the ventral pallial ventricular zone. Our findings on the local cortical origin of the Dbx1-derived pyramidal neurons reconcile the observation of Dbx1-derived neurons in the cortex without evidence of dorsal tangential migration from VP and provide a new framework for the origin of the transient Dbx1-derived pyramidal neuron population. We conclude that these neurons are born locally within the dorsal pallial neuroepithelium.

Highlights

  • Neocortex (NCx) relies on a delicate balance of developmental events, such as neurogenesis, neuronal migration, axogenesis, and cellular death within the dorsal pallium (DP)

  • Images were taken from a minimum of three animals successfully electroporated in each pallial region

  • insular cortex (Ins) our first experiments we wanted to identify the exact location within the mouse Ventral pallium (VP) from which tangentially migrating neurons are generated using in vivo lineage tracing methods (Puelles et al, 2015b)

Read more

Summary

Introduction

Neocortex (NCx) relies on a delicate balance of developmental events, such as neurogenesis, neuronal migration, axogenesis, and cellular death within the dorsal pallium (DP). Tangential migration provides a source for cortical neuronal diversity. Neurons born at the medial, lateral, and caudal ganglionic eminences in the subpallium (SP) migrate tangentially toward the neocortical neuroepithelium and differentiate into GABAergic interneurons (Cooper, 2013). These are the two main neuronal populations in the mature NCx. In addition, several other populations arrive to the DP by tangential migration form various different pallial sources and orchestrate cortical development by leading neurogenesis, circuit formation, and laminar formation (Barber and Pierani, 2015; Garcia-Moreno et al, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call