Abstract

We consider a class of constant-coefficient partial differential operators on a finite-dimensional real vector space which exhibit a natural dilation invariance. Typically, these operators are anisotropic, allowing for different degrees in different directions. The “heat” kernels associated to these so-called positive-homogeneous operators are seen to arise naturally as the limits of convolution powers of complex-valued measures, just as the classical heat kernel appears in the central limit theorem. Building on the functional-analytic approach developed by E. B. Davies for higher-order uniformly elliptic operators with measurable coefficients, we formulate a general theory for (anisotropic) self-adjoint variable-coefficient operators, each comparable to a positive-homogeneous operator, and study their associated heat kernels. Specifically, under three abstract hypotheses, we show that the heat kernels satisfy off-diagonal (Gaussian-type) estimates involving the Legendre-Fenchel transform of the operator’s principle symbol. Our results extend those of E. B. Davies and G. Barbatis and partially extend results of A. F. M. ter Elst and D. Robinson.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call