Abstract

BackgroundTriticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe’s evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing.ResultsThe read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago.ConclusionsThe comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.

Highlights

  • Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives

  • Comparing of the genome sizes measured for the diploid species Thinopyrum bessarabicum and Th. elongatum to the data from the Kew Angiosperm DNA C-values database revealed that the analysed accessions represent polyploids instead of diploids

  • Whole chloroplast genomes were assembled in a twostep procedure via (1) an intermediate step of generating a species-specific reference if there was none available in GenBank and (2) the assembly of the chloroplast of each accession via read mapping to sequences from step (1)

Read more

Summary

Introduction

The tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. The number of whole plastid genome sequences is increasing [29,30,31,32,33,34], entire chloroplast genomes are mainly available for the domesticated taxa and their closest relatives. These previous studies provide only limited insight in the maternal phylogeny of Triticeae, as only one to few accessions per taxon were included and often support values for the taxonomic units are low [26, 28, 35]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call