Abstract

Backgroundβ-Cell death is the key feature of type 2 diabetes mellitus (T2DM). The misfolding of human Islet Amyloid Polypeptide (hIAPP) is regarded as one of the causative factors of T2DM. Recent studies suggested that a diet based on date fruits presents various health benefits, as these fruits are naturally enriched in plant polyphenols. MethodIn this study, we used a broad biophysical approach, using cell biology techniques and bioinformatic tools, to demonstrate that various polyphenols from date palm (Phoenix dactylifera L.) fruit significantly inhibited hIAPP aggregation and cytotoxicity. ResultOur results suggest that all of the polyphenols showed inhibitory effects, albeit varied, on the formation of toxic hIAPP amyloids. Correlation between cell viability assay, permeabilization of synthetic phospholipid vesicles tests, and ANS florescence measurements, revealed that both classes of polyphenols protected INS-1E cells from the toxicity of amylin aggregates. Docking results showed that the used polyphenols physically interacted with both hIAPP amyloidogenic region (residues Ser20-Ser29) and the non-amyloidogenic regions via hydrophobic and hydrogen interactions, thus reducing aggregation levels. ConclusionThese findings highlight the benefits of consuming dates and the great potential of its polyphenols as a potential therapy for the prevention and treatment of T2DM as well as for many other amyloid-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.