Abstract

Force myography (FMG) is a contemporary, non-invasive, wearable technology that can read the underlying muscle volumetric changes during muscle contractions and expansions. The FMG technique can be used in recognizing human applied hand forces during physical human robot interactions (pHRI) via data-driven models. Several FMG-based pHRI studies were conducted in 1D, 2D and 3D during dynamic interactions between a human participant and a robot to realize human applied forces in intended directions during certain tasks. Raw FMG signals were collected via 16-channel (forearm) and 32-channel (forearm and upper arm) FMG bands while interacting with a biaxial stage (linear robot) and a serial manipulator (Kuka robot). In this paper, we present the datasets and their structures, the pHRI environments, and the collaborative tasks performed during the studies. We believe these datasets can be useful in future studies on FMG biosignal-based pHRI control design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.