Abstract

BackgroundIn upper-extremity stroke rehabilitation applications, the potential use of Force Myography (FMG) for detecting grasping is especially relevant, as the presence of grasping may be indicative of functional activity, which is a key goal of rehabilitation. To date, most FMG research has focused on the classification of the raw FMG signal (i.e. instantaneous FMG samples) in order to determine the state of the hand. However, given the temporal nature of force generation during grasping, the use of temporal feature extraction techniques may yield increased accuracy. In this study, the effectiveness of classifying temporal features of the FMG signal for the two-class grasp detection problem of “grasp” versus “no grasp” (i.e. no object in hand) was evaluated with ten healthy participants. The experimental protocol comprised grasp and move tasks, requiring the use of six different grasp types frequently used in daily living, in conjunction with arm and hand movements. Data corresponding to arm and hand movements without grasping were also included to evaluate robustness to false positives. The temporal features evaluated were mean absolute value (MAV), root mean squared (RMS), linear fit (LF), parabolic fit (PF), and autoregressive model (AR). Off-line classification performance of the five temporal features, with a 0.5 s extraction window, were determined and compared to that of the raw FMG signal using area under the receiver operating curve (AUC).ResultsThe raw FMG signal yielded AUC of 0.819 ± 0.098. LF and PF resulted in the greatest increases in classification performance, and provided statistically significant increases in performance. The largest increase obtained was with PF, yielding AUC of 0.869 ± 0.061, corresponding to a 6.1% relative increase over the raw FMG signal. Despite the additional fitting term provided by PF, classification performance did not significantly improve with PF when compared to LF.ConclusionsThe results obtained indicate that temporal feature extraction techniques that derive models of the data within the window may yield modest improvements in FMG based grasp detection performance. In future studies, the use of model-based temporal features should be evaluated with FMG data from individuals with stroke, who might ultimately benefit from this technology.

Highlights

  • In upper-extremity stroke rehabilitation applications, the potential use of Force Myography (FMG) for detecting grasping is especially relevant, as the presence of grasping may be indicative of functional activity, which is a key goal of rehabilitation

  • The objective of this study is to evaluate the utility of classifying temporal features of the FMG signal for FMG data associated with a variety of grasp-types, in the presence of confounding upper-extremity movements, for the twoclass grasp detection problem of grasp, regardless of grasp type, versus no grasp

  • The average area under the receiver operating curve (AUC) and accuracy obtained across three folds for a given feature and participant was calculated, and subsequently the average AUCs and accuracies across all participants were calculated for each feature

Read more

Summary

Introduction

In upper-extremity stroke rehabilitation applications, the potential use of Force Myography (FMG) for detecting grasping is especially relevant, as the presence of grasping may be indicative of functional activity, which is a key goal of rehabilitation. Given the wide variety of grasps required to complete activities of daily living (ADL) [12], the presence of grasping, regardless of the grasp type, may be indicative of functional use of a limb, which may contribute to hand motor recovery. The ability to distinguish between grasping, regardless of grasp type, versus no grasping (i.e. no object in hand) could allow FMG based devices to encourage stroke survivors to use their paretic arm functionally as part of daily living, and contribute towards improved rehabilitation outcomes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call