Abstract

Dataset bias is a significant obstacle that negatively affects image classification performance, especially in few-shot learning, where datasets have limited samples per class. However, few studies have focused on this issue. To address this, we propose a bias prediction network that recovers biases such as color from the extracted features of image data, resulting in performance improvement in few-shot image classification. If the network can easily recover the bias, the extracted features may contain the bias. Therefore, the whole framework is trained to extract features that are difficult for the bias prediction network to recover. We evaluate our method by integrating it with several existing few-shot learning models across multiple benchmark datasets. The results show that the proposed network can improve the performance in different scenarios. The proposed approach effectively reduces the negative effect of the dataset bias, resulting in the performance improvements in few-shot image classification. The proposed bias prediction model is easily compatible with other few-shot learning models, and applicable to various real-world applications where biased samples are prevalent, such as VR/AR systems and computer vision applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.