Abstract

Image classification is a critical task in the field of computer vision, and its importance has significantly increased over the past few years. Machine learning and deep learning techniques have demonstrated immense potential in this field. However, traditional image classification models require a vast amount of training data, which can be challenging and expensive to obtain. To overcome this limitation, researchers are turning to few-shot learning, which aims to classify images with limited training samples. This paper presents a detailed analysis of the field of image classification using few-shot learning. First, it investigates the use of data augmentation, transfer learning, and meta-learning methods in this field. Then, it introduces several commonly used datasets and evaluation metrics in few-shot classification, compares several classical few-shot classification methods, and summarizes the experimental results obtained from public datasets. Finally, this paper analyzes the current challenges in few-shot image classification and suggests potential future directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.