Abstract

Rational basis functions are introduced into iterative learning control to enhance the flexibility towards nonrepeating tasks. At present, the application of rational basis functions either suffers from nonconvex optimization problem or requires the predefinition of poles, which restricts the achievable performance. In this article, a new data-driven rational feedforward tuning approach is developed, in which convex optimization is realized without predefining the poles. Specifically, the optimal parameter which eliminates the reference-induced error is directly solved using the least square method. No parametric model is involved in the parameter tuning process and the optimal parameter is estimated using the measured data. In the noisy condition, it is proved that the estimated optimal parameter is unbiased and the estimation accuracy in terms of variance is analysed. The performance of the proposed approach is tested on an ultraprecision wafer stage. The experimental results confirm that high performance is achieved using the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.