Abstract
Iterative learning control (ILC) approaches often exhibit poor extrapolation properties with respect to exogenous signals, such as setpoint variations. This brief introduces rational basis functions in ILC. Such rational basis functions have the potential to both increase performance and enhance the extrapolation properties. The key difficulty that is associated with these rational basis functions lies in a significantly more complex optimization problem when compared with using preexisting polynomial basis functions. In this brief, a new iterative optimization algorithm is proposed that enables the use of rational basis functions in ILC for single-input single-output systems. An experimental case study confirms the advantages of rational basis functions compared with preexisting results, as well as the effectiveness of the proposed iterative algorithm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.