Abstract

This paper focuses on designing an event-triggering mechanism aimed at reducing control updates while maintaining the stability of a saturated closed-loop system. It addresses the regional stabilization of linear systems under input saturation conditions from a data-driven perspective. To do so, we propose a systematic method to convert model-driven conditions into data-driven control design Linear Matrix Inequality (LMI) conditions, enabling the co-design of the event-triggering rule and the state feedback gain. The theoretical contribution is then applied to the control of a spacecraft rendezvous problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call