Abstract

This paper presents a Data-Driven Clinical Decision Support System (CDSS) using machine learning. The proposed system predicts the possibility of diseases based on the patient’s symptoms. It suggests lab tests and medication related to the disease. Lab test results are analyzed to check the probability of liver and kidney diseases. The proposed system uses face recognition to identify the patient. Face recognition module retrieves the Patient Health Record and provides patient information and health records access to the doctor and medical staff. The system is developed using Python Django for Backend, React.JS for User Interface and PostgreSQL as the relational database. The system uses Logistic Regression for possible disease prediction, Support Vector Machine for liver disease prediction, Random Forest for chronic kidney disease prediction. The result of the proposed data-driven clinical decision support system is compared with a doctor’s disease analysis to measure the effectiveness of the proposed system. This kind of system can help doctors in providing better care and predict the disease at an early stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.