Abstract

In high-density data storage systems, noise becomes highly correlated and data dependent as a result of media noise, channel nonlinearities, and front-end filters. In such environments, conventional timing recovery schemes will exhibit large residual timing jitter and, especially, data-dependent timing jitter. This paper presents a new data-aided timing recovery algorithm for data storage systems with data-dependent noise. We derive a maximum-likelihood timing recovery scheme based on a data-dependent Gauss-Markov model of the noise. The timing recovery algorithm incorporates data-dependent noise prediction parameters in the form of linear prediction filters and prediction error variances. Moreover, because noise can be nonstationary in practice, we propose an adaptive algorithm to estimate and track the noise prediction parameters. Simulation results, for an idealized optical storage channel incorporating a simple model of media noise, illustrate the merits of our algorithm

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.