Abstract

Cephaleuros is often known as an algal pathogen with 19 taxonomically valid species, some of which are responsible for red rust and algal spot diseases in vascular plants. No chloroplast genomes have yet been reported in this genus, and the limited genetic information is an obstacle to understanding the evolution of this genus. In this study, we sequenced six new Trentepohliales chloroplast genomes, including four Cephaleuros and two Trentepohlia. The chloroplast genomes of Trentepohliales are large compared to most green algae, ranging from 216 to 408 kbp. They encode between 93 and 98 genes and have a GC content of 26-36%. All new chloroplast genomes were circular-mapping and lacked a quadripartite structure, in contrast to the previously sequenced Trentepohlia odorata, which does have an inverted repeat. The duplicated trnD-GTC, petD and atpA genes in C. karstenni may be remnants of the IR region and shed light on its reduction. Chloroplast genes of Trentepohliales show elevated rates of evolution, strong rearrangement dynamics and several genes display an alternative genetic code with reassignment of the UGA/UAG codon presumably coding for arginine. Our results present the first whole chloroplast genome of the genus Cephaleuros and enrich the chloroplast genome resources of Trentepohliales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.