Abstract
As a popular data representation technique, Nonnegative matrix factorization (NMF) has been widely applied in edge computing, information retrieval and pattern recognition. Although it can learn parts-based data representations, existing NMF-based algorithms fail to integrate local and global structures of data to steer matrix factorization. Meanwhile, semi-supervised ones ignore the important role of instances from different classes in learning the representation. To solve such an issue, we propose a novel semi-supervised NMF approach via joint graph regularization and constraint propagation for edge computing, called robust constrained nonnegative matrix factorization (RCNMF), which learns robust discriminative representations by leveraging the power of both L2, 1-norm NMF and constraint propagation. Specifically, RCNMF explicitly exploits global and local structures of data to make latent representations of instances involved by the same class closer and those of instances involved by different classes farther. Furthermore, RCNMF introduces the L2, 1-norm cost function for addressing the problems of noise and outliers. Moreover, L2, 1-norm constraints on the factorial matrix are used to ensure the new representation sparse in rows. Finally, we exploit an optimization algorithm to solve the proposed framework. The convergence of such an optimization algorithm has been proven theoretically and empirically. Empirical experiments show that the proposed RCNMF is superior to other state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.