Abstract

Recently non-negative matrix factorization (NMF) has received a lot of attentions in information retrieval, computer vision and pattern recognition. NMF aims to find two non-negative matrices whose product can well approximate the original matrix. The sizes of these two matrices are usually smaller than the original matrix. This results in a compressed version of the original data matrix. The solution of NMF yields a natural parts-based representation for the data. When NMF is applied for data representation, a major disadvantage is that it fails to consider the geometric structure in the data. In this paper, we develop a graph based approach for parts-based data representation in order to overcome this limitation. We construct an affinity graph to encode the geometrical information and seek a matrix factorization which respects the graph structure. We demonstrate the success of this novel algorithm by applying it on real world problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.