Abstract
Many data driven organisations need to integrate data from multiple, distributed and heterogeneous resources for advanced data analysis. A data integration system is an essential component to collect data into a data warehouse or other data analytics systems. There are various alternatives of data integration systems which are created in-house or provided by vendors. Hence, it is necessary for an organisation to compare and benchmark them when choosing a suitable one to meet its requirements. Recently, the TPC-DI is proposed as the first industrial benchmark for evaluating data integration systems. When using this benchmark, we find some typical data quality problems in the TPC-DI data source such as multi-meaning attributes and inconsistent data schemas, which could delay or even fail the data integration process. This paper explains processes of this benchmark and summarises typical data quality problems identified in the TPC-DI data source. Furthermore, in order to prevent data quality problems and proactively manage data quality, we propose a set of practical guidelines for researchers and practitioners to conduct data quality management when using the TPC-DI benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Lecture Notes in Business Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.