Abstract

Performing homodyne detection at one port of squeezed-state light interferometer and then binarzing measurement data are important to achieve super-resolving and super-sensitive phase measurements. Here we propose a new data-processing technique by dividing the measurement quadrature into three bins (equivalent to a multi-outcome measurement), which leads to a higher improvement in the phase resolution and the phase sensitivity under realistic experimental condition. Furthermore, we develop a new phase-estimation protocol based on a combination of the inversion estimators of each outcome and show that the estimator can saturate the Cramer-Rao lower bound, similar to asymptotically unbiased maximum likelihood estimator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.