Abstract

Establishment of appropriate data in certain formats is essential for agricultural water cycle analysis, which involves complex interactions and uncertainties such as climate change, social & economic change, and watershed environmental change. The main objective of this study was to develop web-based Data processing and Model linkage Techniques for Agricultural Water-Resource analysis (AWR-DMT). The developed techniques consisted of database development, data processing technique, and model linkage technique. The watershed of this study was the upper Cheongmi stream and Geunsam-Ri. The database was constructed using MS SQL with data code, watershed characteristics, reservoir information, weather station information, meteorological data, processed data, hydrological data, and paddy field information. The AWR-DMT was developed using Python. Processing technique generated probable rainfall data using non-stationary frequency analysis and evapotranspiration data. Model linkage technique built input data for agricultural watershed models, such as the TANK and Agricultural Watershed Supply (AWS). This study might be considered to contribute to the development of intelligent watercycle analysis by developing data processing and model linkage techniques for agricultural water-resource analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.