Abstract

Glucose isomerase (GI) is a crucial enzyme in industrial processes, including the production of high-fructose corn syrup, biofuels, and other renewable chemicals. Understanding the mechanisms of GI inhibition by GI inhibitors can offer valuable insights into enhancing production efficiency. We previously reported the subatomic resolution structure of Streptomyces rubiginosus GI (SruGI) complexed with a xylitol inhibitor, determined at 0.99 Å resolution, was reported. Structural analysis showed that the xylitol inhibitor is partially bound to the M1 binding site at the SruGI active site, enabling it to distinguish the xylitol-bound and -free state of SruGI. This structural information demonstrates that xylitol binding to the M1 site causes a conformational change in the metal binding site and the substrate binding channel of SruGI. Herein, detailed information on data collection and processing procedures of the subatomic resolution structure of the SruGI complexed with xylitol was reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call