Abstract

Four cement-based and four calcium-sulphate-based screed types are investigated. The samples have a diameter of 300 mm and a height of 35 or 70 mm. Up to ten humidity sensors are embedded directly during the concreting of the screed samples. Thus, the humidity over the sample height is monitored during hardening, hydration, evaporation, and oven drying. Furthermore, the screed samples are weighed during every measurement to determine the total mass and the corresponding moisture loss.To define the pore system precisely, mercury intrusion porosimetry as well as gas adsorption is performed. According to the data, the entire pore volume distribution is known. The measured pore diameters range from 0.8 nm to 100 µm and the total porosity of the examined screeds ranges between 11% and 22%.Based on these measurement data, moisture transport, pore saturation as well as sorption isotherms and their hysteresis may be calculated quantitatively as described in “Monitoring of the absolute water content in porous materials based on embedded humidity sensors” (Strangfeld and Kruschwitz, 1921).

Highlights

  • Four cement-based and four calcium-sulphate-based screed types are investigated

  • The humidity over the sample height is monitored during hardening, hydration, evaporation, and oven drying

  • The screed samples are weighed during every measurement to determine the total mass and the corresponding moisture loss

Read more

Summary

Data Article

Data of embedded humidity sensors, sample weights, and measured pore volume distribution for eight screed types. The measured pore diameters range from 0.8 nm to 100 mm and the total porosity of the examined screeds ranges between 11% and 22%. Based on these measurement data, moisture transport, pore saturation as well as sorption isotherms and their hysteresis may be calculated quantitatively as described in “Monitoring of the absolute water content in porous materials based on embedded humidity sensors” (Strangfeld and Kruschwitz, 1921). Nn Corresponding author at: Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205 Berlin, Germany.

Related research article
Findings
Value of the data
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.