Abstract

Moisture storage and transport properties of southern pine (Pinus spp.) wood were measured for implementation into hygrothermal models. Specimens were untreated or pressure-treated with alkaline copper quaternary (ACQ) preservative. Moisture storage was characterized with sorption isotherms in the hygroscopic region (high capillary pressures) and documented with mercury intrusion porosimetry in the overhygroscopic region (low capillary pressures). The data were then combined into a single moisture retention curve as a function of capillary pressure. Moisture transport was evaluated from steady-state water vapor transmission and dynamic capillary water absorption experiments. These data were used to calculate the moisture permeability over the entire range of capillary pressures using the diffusivity approach of Carmeliet et al. Moisture storage and transport properties were similar for the untreated and ACQ-treated southern pine, except for the permeability of the treated wood which was lower in the radial direction. The data presented here can be used to improve the accuracy of hygrothermal and combined hygrothermal–corrosion modeling simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call