Abstract

This paper describes the use of decision tree and rule induction in data-mining applications. Of methods for classification and regression that have been developed in the fields of pattern recognition, statistics, and machine learning, these are of particular interest for data mining since they utilize symbolic and interpretable representations. Symbolic solutions can provide a high degree of insight into the decision boundaries that exist in the data, and the logic underlying them. This aspect makes these predictive-mining techniques particularly attractive in commercial and industrial data-mining applications. We present here a synopsis of some major state-of-the-art tree and rule mining methodologies, as well as some recent advances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.