Abstract

Abstract Background: Previous research has shown success of data mining methods in marketing. However, their integration in a knowledge management system is still not investigated enough. Objectives: The purpose of this paper is to suggest an integration of two data mining techniques: neural networks and association rules in marketing modeling that could serve as an input to knowledge management and produce better marketing decisions. Methods/Approach: Association rules and artificial neural networks are combined in a data mining component to discover patterns and customers’ profiles in frequent item purchases. The results of data mining are used in a web-based knowledge management component to trigger ideas for new marketing strategies. The model is tested by an experimental research. Results: The results show that the suggested model could be efficiently used to recognize patterns in shopping behaviour and generate new marketing strategies. Conclusions: The scientific contribution lies in proposing an integrative data mining approach that could present support to knowledge management. The research could be useful to marketing and retail managers in improving the process of their decision making, as well as to researchers in the area of marketing modelling. Future studies should include more samples and other data mining techniques in order to test the model generalization ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.