Abstract
The current explosion of data and information, which are mainly caused by the continuous adoption of data warehouses and the extensive use of the Internet and its related technologies, has increased the urgent need for the development of techniques for intelligent data analysis. Data mining, which concerns the discovery and extraction of knowledge chunks from large data repositories, addresses this need. Data mining automates the discovery of hidden patterns and relationships that may not always be obvious. Data mining tools include classification techniques (such as decision trees, rule induction programs and neural networks) (Kou et al., 2007); clustering algorithms and association rule approaches, amongst others. Data mining has been fruitfully used in many of domains, including marketing, medicine, finance, engineering and bioinformatics. There still are, however, a number of factors that militate against the widespread adoption and use of this new technology. This is mainly due to the fact that the results of many data mining techniques are often difficult to understand. For example, the results of a data mining effort producing 300 pages of rules will be difficult to analyze. The visual representation of the knowledge embedded in such rules will help to heighten the comprehensibility of the results. The visualization of the data itself, as well as the data mining process should go a long way towards increasing the user’s understanding of and faith in the data mining process. That is, data and information visualization provide users with the ability to obtain new insights into the knowledge, as discovered from large repositories. This paper describes a number of important visual data mining issues and introduces techniques employed to improve the understandability of the results of data mining. Firstly, the visualization of data prior to, and during, data mining is addressed. Through data visualization, the quality of the data can be assessed throughout the knowledge discovery process, which includes data preprocessing, data mining and reporting. We also discuss information visualization, i.e. how the knowledge, as discovered by a data mining tool, may be visualized throughout the data mining process. This aspect includes visualization of the results of data mining as well as the learning process. In addition, the paper shows how virtual reality and collaborative virtual environments may be used to obtain an immersive perspective of the data and the data mining process as well as how visual data mining can be used to directly mine functionality with specific applications in the emerging field of proteomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.