Abstract

This paper represents current research in low-power Very Large Scale Integration (VLSI) domain. Nowadays low power has become more sought research topic in electronic industry. Power dissipation is the most important area while designing the VLSI chip. Today almost all of the high speed switching devices include the Ternary Content Addressable Memory (TCAM) as one of the most important features. When a device consumes less power that becomes reliable and it would work with more efficiency. Complementary Metal Oxide Semiconductor (CMOS) technology is best known for low power consumption devices. This paper aims at designing a router application device which consumes less power and works more efficiently. Various strategies, methodologies and power management techniques for low power circuits and systems are discussed in this research. From this research the challenges could be developed that might be met while designing low power high performance circuit. This work aims at developing Data Aware AND-type match line architecture for TCAM. A TCAM macro of 256 × 128 was designed using Cadence Advanced Development Environment (ADE) with 90 nm technology file from Taiwan Semiconductor Manufacturing Company (TSMC). The result shows that the proposed Data Aware architecture provides around 35% speed and 45% power improvement over existing architecture.

Highlights

  • Power consumption is a major problem while designing Very Large Scale Integration (VLSI) circuit

  • Complementary Metal Oxide Semiconductor (CMOS) technology is best known for low power consumption devices

  • From this research the challenges could be developed that might be met while designing low power high performance circuit

Read more

Summary

Introduction

Power consumption is a major problem while designing VLSI circuit. Ravichandran were adapted to reduce the power consumption while designing VLSI circuit. Network routers which are used for the packet data transmission, go through the process of IP address matching technique. The matching technique requires the lookup table which has the problem of multiple data access. The new idea of content addressable memory (CAM) is the most popular hardware solution to support the high lookup table speed. The CAM is address by data rather than by address. Since search can be done in parallel, it leads to faster data search than the software lookup. The CAM is widely used in Translation Look aside Buffer (TLB), high associative cache, image processing, database and network routers, etc.; all require fast table lookup

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.