Abstract
<div>Abstract<p>Pancreatic cancer cell lines with mutated ras underwent an alternative form of cell death (aponecrosis) when treated concomitantly with clinically achievable concentrations of arsenic trioxide, ascorbic acid, and disulfiram (Antabuse; AAA). AAA's major effects are mediated through generation of intracellular reactive oxygen species (ROS) and more than 50% decline in intracellular ATP. N-acetyl cysteine and a superoxide dismutase mimetic prevented aponecrosis and restored intracellular ATP levels. DIDS (4,4′-diisothiocyanatostilbene-2, 2′ disulfonic acid), the pan- Voltage-Dependent Anion Channel (VDAC), -1, 2, 3 inhibitor and short hairpin RNA (shRNA) to VDAC-1 blocked cell death and ROS accumulation. <i>In vivo</i> exposure of AAA led to a 62% reduction in mean tumor size and eliminated tumors in 30% of nude mice with PANC-1 xenografts. We concluded that early caspase-independent apoptosis was shifted to VDAC-mediated “targeted” aponecrosis by the addition of disulfiram to arsenic trioxide and ascorbic acid. Conceptually, this work represents a paradigm shift where switching from apoptosis to aponecrosis death pathways, also known as targeted aponecrosis, could be utilized to selectively kill pancreatic cancer cells resistant to apoptosis. <i>Mol Cancer Ther; 12(12); 2792–803. ©2013 AACR</i>.</p></div>
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have