Abstract

<div>Abstract<p>Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) is a housekeeping gene product/cytokine that catalyzes a step in glycolysis and gluconeogenesis, and acts as a multifunctional cytokine associated with aggressive tumors. PGI/AMF has been correlated significantly with breast cancer progression and poor prognosis in breast cancer. We show here that ectopic expression of PGI/AMF induced epithelial-to-mesenchymal transition (EMT) in MCF10A normal human breast epithelial cells, and inhibition of PGI/AMF expression triggered mesenchymal-to-epithelial transition (MET) in aggressive mesenchymal-type human breast cancer MDA-MB-231 cells. EMT in MCF10A cells was shown by morphologic changes and loss of E-cadherin/β-catenin–mediated cell-cell adhesion, which is concomitant with the induction of the E-cadherin transcriptional repressor Snail and proteosome-dependent degradation of β-catenin protein. Molecular analysis showed that PGI/AMF suppressed epithelial marker expressions and enhanced mesenchymal marker expressions. Silencing of PGI/AMF expression by RNA interference in MDA-MB-231 cells induced the reverse processes of EMT including altered cell shape, gain of epithelial marker, and reduction of mesenchymal marker, e.g., MET. Taken together, the results show the involvement of PGI/AMF in both EMT and MET: overexpression of PGI/AMF induces EMT in normal breast epithelial cells and reduction of PGI/AMF expression led to MET in aggressive breast cancer cells. These results suggest for the first time that PGI/AMF is a key gene to both EMT in the initiating step of cancer metastasis and MET in the later stage of metastasis during breast cancer progression. [Cancer Res 2009;69(13):5349–56]</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.